Augmenting Wikipedia-Extraction with Results from the Web

نویسندگان

  • Fei Wu
  • Raphael Hoffmann
  • Daniel S. Weld
چکیده

Not only is Wikipedia a comprehensive source of quality information, it has several kinds of internal structure (e.g., relational summaries known as infoboxes), which enable selfsupervised information extraction. While previous efforts at extraction from Wikipedia achieve high precision and recall on well-populated classes of articles, they fail in a larger number of cases, largely because incomplete articles and infrequent use of infoboxes lead to insufficient training data. This paper explains and evaluates a method for improving recall by extracting from the broader Web. There are two key advances necessary to make Web supplementation effective: 1) a method to filter promising sentences from Web pages, and 2) a novel retraining technique to broaden extractor recall. Experiments show that, used in concert with shrinkage, our techniques increase recall by a factor of up to 8 while maintaining or increasing precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore

Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...

متن کامل

Augmenting Wikipedia with Named Entity Tags

Wikipedia is the largest organized knowledge repository on the Web, increasingly employed by natural language processing and search tools. In this paper, we investigate the task of labeling Wikipedia pages with standard named entity tags, which can be used further by a range of information extraction and language processing tools. To train the classifiers, we manually annotated a small set of W...

متن کامل

Exploiting Syntactic and Semantic Information for Relation Extraction from Wikipedia

The exponential growth of Wikipedia recently attracts the attention of a large number of researchers and practitioners. One of the current challenge on Wikipedia is to make the encyclopedia processable for machines. In this paper, we deal with the problem of extracting relations between entities from Wikipedia’s English articles, which can straightforwardly be transformed into Semantic Web meta...

متن کامل

Wikipedia Link Structure and Text Mining for Semantic Relation Extraction

Wikipedia, a collaborative Wiki-based encyclopedia, has become a huge phenomenon among Internet users. It covers huge number of concepts of various fields such as Arts, Geography, History, Science, Sports and Games. Since it is becoming a database storing all human knowledge, Wikipedia mining is a promising approach that bridges the Semantic Web and the Social Web (a. k. a. Web 2.0). In fact, i...

متن کامل

Multi-view Bootstrapping for Relation Extraction by Exploring Web Features and Linguistic Features

Binary semantic relation extraction from Wikipedia is particularly useful for various NLP and Web applications. Currently frequent pattern miningbased methods and syntactic analysis-based methods are two types of leading methods for semantic relation extraction task. With a novel view on integrating syntactic analysis on Wikipedia text with redundancy information from the Web, we propose a mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008